The solutions to some operator equations in Hilbert $C^*$-module

Authors

  • M. Hassani Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Abstract:

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the solutions to some operator equations in hilbert c*-module

in this paper, we state some results on product of operators with closed rangesand we solve the operator equation txs*- sx*t*= a in the general setting of theadjointable operators between hilbert c*-modules, when ts = 1. furthermore, by usingsome block operator matrix techniques, we nd explicit solution of the operator equationtxs*- sx*t*= a.

full text

G-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules

Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...

full text

The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules

In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.

full text

g-positive and g-repositive solutions to some adjointable operator equations over hilbert c^{∗}-modules

some necessary and sufficient conditions are given for the existence of a g-positive (g-repositive) solution to adjointable operator equations $ax=c,axa^{left( astright) }=c$ and $axb=c$ over hilbert $c^{ast}$-modules, respectively. moreover, the expressions of these general g-positive (g-repositive) solutions are also derived. some of the findings of this paper extend some known results in the...

full text

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

full text

the solutions to the operator equation $txs^* -sx^*t^*=a$ in hilbert $c^*$-modules

in this paper, we find explicit solution to the operator equation$txs^* -sx^*t^*=a$ in the general setting of the adjointable operators between hilbert $c^*$-modules, when$t,s$ have closed ranges and $s$ is a self adjoint operator.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 04  issue 01

pages  35- 42

publication date 2015-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023